After hearing the story, students could write, with partners or individually, their own myths or legends explaining the phenomenon of the moon phases. The teacher can later engage students in a discussion about what in the Inuit story (and their own stories) they believe correspond to scientific "facts" about the moon. Again, lists would be generated based on student input. The students would then be provided with reference materials about the moon. In small groups, they would generate facts about the moon that correspond with information in the story. Teacher background information follows:
The earth's one natural satellite, the moon, is more than one quarter the size of earth itself (3456-Km diameter), making the earth-moon system virtually a double-planet. Because of its smaller size, the moon's gravity is one-sixth of the earth's gravity, as we saw demonstrated by the gigantic leaps of the Apollo astronauts.
When the moon appears smaller than a quarter, we call it a crescent. When the moon appears larger than a quarter, we call it gibbous. When the moon is getting bigger (phases New to Full) it is waxing. When it is getting smaller (phases Full to New), it is waning. For example, if today the moon were a waxing crescent, then tomorrow the crescent shape would continue to grow larger, approaching first quarter. After first quarter, the Moon would be a waxing gibbous, and continue growing until it reached full. The moon would then begin to shrink, becoming first a waning gibbous and eventually reaching third quarter. Following third quarter, it becomes a waning crescent, and continues to shrink until it becomes invisible at new moon. A helpful way to remember whether the moon is waxing or waning is the following: A crescent moon that looks like a "C" is shrinking (C for collapsing). If it looks like a "D", then it is growing. This is also true for a gibbous moon, but it is a bit trickier to see. If the edge of the moon (the real edge of the moon, not the edge of the night on the moon) is curved like a "C" the gibbous moon is shrinking. Another way to think of it is that the moon always grows or shrinks from right to left.
The class can do month-long moon observations, recording what they see during a 24 hour period, drawing the moon, noting where it is in the sky and its angle above the horizon. After a discussion of what they have learned about the moon and its phases, a lesson would be introduced.
Styrofoam Ball Simulation
Type of Lesson: Hands-on activity
Time needed: 1 hour (or one class period with follow-up the next day)
Science skills addressed:
- Describe, compare and explain the motions of the earth and the moon in the solar system.
- Describe and explain common observations of the day and night skies.
Summary of Lesson:
After completing this activity students should understand that the observed phase of the moon is determined by the moon's position relative to the earth and sun.
Materials: Light bulb (suspended from ceiling or on a stand) or overhead projector light Styrofoam balls 2-3 inches in diameter (have students work in pairs) Plenty of room for students to rotate! Helpful: At least one additional adult and/or high school student for assistance.
Procedure
1. Turn on the model sun and turn off the other lights in the room. Have students stand. Tell them that in this system, the lamp is sun and their head is the earth. Their nose is their hometown on the surface of the earth.
2. Ask students to stand so that it is noon in their hometown (Their nose should point toward the sun). Have students turn (rotate) until it is midnight in their hometown. Counterclockwise rotation simulates the direction as seen from the North Pole. (Midnight is when their backs are to the "sun"). Students can also rotate to show dawn and dusk in their hometowns and get an idea why the sun appears to rise in the east and set in the west.
3. Hand out the Styrofoam "moons" and have students hold them at arm's length away from (and above) their heads. Allow students to figure out how to rotate to simulate the phases of the moon as they viewed them during the previous month-long observation. (If necessary, demonstrate how the moon orbits the earth in a counterclockwise direction (from right to left). As students watch their moons, they will see that it goes through phases similar to those of the real moon.
4. Allow students to work through the phases of the moon with partner (If necessary, go through the 8 major phases of the moon with students)
a. New Moon: moon is between sun and earth, students view shadowed side of "moon".
b. Waxing Crescent: rotating from a new moon towards a first quarter, a backward "C" shape will appear on "moon".
c. First Quarter: right half of the "moon" facing "earth" is lit (right shoulder is pointing towards the "sun")
d. Waxing Gibbous: rotating from a first quarter to full moon
e. Full Moon: earth is between the moon (be sure "moon" is held above "earth") and the sun, entire lit side of "moon" is visible. A lunar eclipse occurs when the moon passes through the earth's shadow. Have students simulate this event.
f. Waning Gibbous: rotating from a full moon to last quarter, less and less of the moon is lit each night.
g. Last Quarter: left half of side of "moon" facing the "earth" is lit (left shoulder is pointing to the "sun").
h. Waning Crescent: Rotating from a last quarter to a new moon, a "C" shape of light is seen on the left side of the "moon".
Evaluation
Name a moon phase and have students rotate until they are in the correct phase. Inclusion of eclipses (when the "earth" is in a direct line between the "sun" and the "moon") can also be demonstrated.
Extensions and Follow-up
This lesson can be a springboard for theme immersion with the students. They can do a mapping exercise in which they indicate areas of specific interest that they would like to explore as individuals or in small groups. One idea is to allow students to explore the origin of the myths and legends about the moon. This honors and validates the beliefs of non-mainstream cultures. Following this, having discussed the myths and legends, students could write their own myth or legend about the phases of the moon.